日韩欧美中文字幕精品-日本在线观看视频网站-久草青青在线-暖暖av在线|www.xinjingshu.com

座機:0731-82194452

手機:15173131150

網站首頁 - 產品中心 - 顯微成像 > 超高速視頻級原子力顯微鏡 > 日本RIBM HS-AFM超高速視頻級原子力顯微鏡
和茂儀器
產品中心

日本RIBM HS-AFM超高速視頻級原子力顯微鏡

  •  
     
    產品簡介:
     
    超高速視頻級原子力顯微鏡(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由日本 Kanazawa 大學 Prof. Ando 教授團隊研發的,也是世界上第一臺可以達到視頻級成像的商業化原子力顯微鏡。HS-AFM突破了傳統原子力顯微鏡“掃描成像速慢”的限制,能夠實現在液體環境下超快速動態成像,分辨率為納米水平。樣品無需特殊固定,不影響生物分子的活性,尤其適用于生物大分子互作動態觀測。推出至今,全球已有80多位用戶,發表 SCI 文章 200 余篇,包括Science, Nature, Cell 等頂級雜志。

    技術特征:
     
    掃描速度快
    探針小,適用于生物樣品
    自動校正,適合長時間測樣
    ◆ 掃描速度最高可達 20 frame/s
    ◆ 有 4 種掃描臺可供選擇
    ◆ 懸臂探針共振頻率高,彈簧系
    數小。避免了對生物樣品等的損傷
    ◆ 懸臂探針可自動漂移校準,
    適用于長時間觀測。

    技術原理:
     

    超高速視頻級原子力顯微鏡應用領域:
     
    應用包括:利用 HS-AFM可在納米尺度動態實時記錄生物大分子的運動以及分子間相互作用,包括:  
    walking myosin V
    實時觀察
    dendrite growth in
    neuron 實時觀察
    rotorless F1-ATPase
    實時觀察
    light response for D69N
    實時觀察
     
             
    IgG antibody 150nm * 150nm   plasmid DNA 250nm * 250nm myosinⅡ 500nm * 500nm         bacteriorhodopsin 40nm * 40nm
             
    lipid membrane
    3500nm * 3500nm
      350nm poly beads 900nm * 900nm E.coli 3000nm * 3000nm         350nm poly beads 3000nm * 3000nm

    超高速視頻級原子力顯微鏡相關應用案例:
     
    1.Video imaging of walking myosin V 實時觀察myosin V蛋白的運動
    N. Kodera et al. Nature 468, 72 (2010). Kanazawa University
     
    2.Real-space and real-time dynamics of CRISPR-Cas9 實時顯示CRISPR基因編輯
    Mikihiro et al. Nature Communications, (2017). Kanazawa University

    設備規格及參數:
     
    標準配置
    掃描速度 scan speed 50 ms/frame (20 frames/sec)
    壓電掃描器 piezo range X: 0.7µm, Y:0.7µm, Z: 0.4µm
    樣品大小 sample size 1.5mm in diameter
    掃描環境 environment In liquid/In air
    控制系統 control system PID control, Dynamic PID control
    significant Function Scanner active dumping,Drift correction for cantilever excitation
    可選配置
    光照裝置
    Light irradiation Unit
    Light irradiation unit for the experiments with caged
    compounds. Variable wavelength: 350-560nm
    寬掃描臺
    wide scanner
    1frames/s;XY:4µm×4µm, Z:0.7µm
    超寬掃描臺Amplified
    ultra wider scanner
    0.1frames/s;XY:30µm×30µm, Z:1.2µm
    微流控系統
    Circulation unit
    The observation solutions can be exchanged while
    continuing AFM observation.

     
    已發表文獻(2017年):
     
    1. Ando T.; "Directly watching biomolecules in action by high-speed atomic force microscopy"; Biophys. Rev. (2017)
    2. Ando T.; "High-speed Atomic Force Microscopy for Observing Protein Molecules in Dynamic Action", Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics (2017)
    3. Aybeke E., Belliot G., Lemaire‐Ewing S., Estienney M., Lacroute Y., Pothier P., Bourillot E., Lesniewska, E.; "HS‐AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts"; Small 13 1 (2017)
    4. Cai W, Liu Z., Chen Y., Shang G.; "A Mini Review of the Key Components used for the Development of High-Speed Atomic Force Microscopy"; Science of Advanced Materials Vol. 9 Numb. 1 (2017) p.77-88
    5. Colom A., Redondo-Morata L., Chiaruttini N., Roux A., Scheuring S.; "Dynamic remodeling of the dynamin helix during membrane constriction"; Proceedings of the National Academy of Sciences 114 21 (2017)
    6. Dufrêne Y., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber Ch., Müller D.; "Imaging modes of atomic force microscopy for application of molecular and cell biology"; Nat. Nanotechnol. 12 (2017) p.295-307
    7. Harada H., Onoda A., Uchihashi T., Watanabe H., Sunagawa N., Samejima M., Igarashi K., Hayashi T.; "Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis"; Chemical Science (2017)
    8. Karner A., Nimmervoll B., Plochberger B., Klotzsch E., Horner A., Knyazev D., Kuttner R., Winkler K., Winter L., Siligan Ch., Ollinger N., Pohl P., Preiner J.; "Tuning membrane protein mobility by confinement into nanodomains"; Nature Nanotechnology 12 3 (2017) p.260-266
    9. Keya J., Inoue D., Suzuki Y., Kozai T., Ishikuro D., Kodera N., Uchihashi T., Kabir A., Endo M., Sada K., Kakugo A.; "High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM" ; Scientific Reports 7 1 (2017)
    10. Kim Y.; "An Advanced Characterization Method for the Elastic Modulus of Nanoscale Thin-Films Using a High-Frequency Micromechanical Resonator"; Materials 10 7 (2017)
    11. Kim Y.; "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam"; Journal of Sandwich Structures & Materials (2017)
    12. Korolkov V., Baldoni M., Watanabe K., Taniguchi T., Besley E., Beton P.; "Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays"; Nature Chemistry (2017)
    13. Legrand B., Salvetat J.-P., Walter B., Faucher M., Théron D., Aimé J.-P.; "Multi-MHz micro-electro-mechanical sensors for atomic force microscopy"; Ultramicroscopy 175 (2017) p.46-57
    14. Liao H.-S., Chih-Wen Yang, Hsien-Chen Ko, En-Te Hwu, Ing-Shouh Hwang; "Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy"; Applied Surface Science (2017)
    15. Matsui S., Kureha T., Hiroshige S., Shibata M., Uchihashi T., Suzuki D.; "Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution"; Angewandte Chemie (2017)
    16. Mierzwa B., Chiaruttini N., Redondo-Morata L., Moser von Filseck J., König J., Larios J., Poser I., Müller-Reichert T., Scheuring S., Roux A., Gerlich D.; "Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodeling during cytokinesis"; Nature Cell Biology (2017)
    17. Miyata K., Tracey J., Miyazawa K., Haapasilta V., Spijker P., Kawagoe Y., Foster A., Tsukamoto K., Fukuma T.; "Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation"; Nano Lett. 17 7 (2017) p.4083-4089
    18. Miyazawa K., Watkins M., Shluger A., Fukuma T.; "Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite–water interfaces"; Nanotechnology Vol. 28 Numb. 24 (2017)
    19. Mohamed M., Kobayashi A., Taoka A., Watanabe-Nakayama T., Kikuchi Y., Hazawa M., Minamoto T., Fukumori Y., Kodera N., Uchihashi T., Ando T., Wong R.; "High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells"; ACS Nano 11 6 (2017) p.5567-5578
    20. Nievergelt A., Andany S., Adams J., Hannebelle M., Fantner G.; "Components for high-speed atomic force microscopy optimized for low phase-lag"; Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017)
    21. Rangl M., Rima L., Klement J., Miyagi A., Keller S., Scheuring S.; "Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy"; Journal of Molecular Biology 429 7 (2017) p.977-986
    22. Ren J., Zou Q.; "High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach"; Beilstein J. Nanotechnol. 8 (2017) p.1563-1570
    23. Ricci M., Trewby W., Cafolla C., Voïtchovsky K.; "Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions"; Scientific Reports 7 43234 (2017)
    24. Rigato A., Miyagi A., Scheuring S., Rico F.; "High-frequency microrheology reveals cytoskeleton dynamics in living cells"; Nature Physics (2017) DOI: 10.1038/NPHYS4104
    25. Ruan Y., Miyagi A., Wang X., Chami M., Boudker O., Scheuring S.; "Direct visualization of glutamate transporter elevator mechanism by high-speed AFM"; PNAS 114 7 (2017) p.1584-1588
    26. Sadeghian H., Herfst R., Dekker B., Winters J., Bijnagte T., Rijnbeek R.; "High-throughput atomic force microscopes operating in parallel"; Review of Scientific Instruments 88 033703 (2017)
    27. Sakiyama Y., Panatala R., Lim R.; "Structural Dynamics of the Nuclear Pore Complex"; Seminars in Cell and Developmental Biology (2017)
    28. Shibata M., Watanabe H., Uchihashi T., Ando T., Yasuda R.; "High-speed atomic force microscopy imaging of live mammalian cells"; Biophysics and Physicobiology Vol. 14 (2017) p.127-135
    29. Terahara N., Kodera N., Uchihashi T., Ando T., Namba K., Minamino T.; "Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor"; Science Advances 3 11 eaao4119 (2017)
    30. Uchihashi T., Scheuring S.; "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes"; Biochim Biophys Acta. (2017)
    31. Usukura E., Narita A., Yagi A., Sakai N., Uekusa Y., Imaoka Y., Ito S., Usukura J.; "A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)"; Scientific Reports 7 (2017)
    32. Watanabe S., Ando T.; "High-speed XYZ-nanopositioner for scanning ion conductance microscopy"; Applied Physics Letters 111 11 (2017)
    33. Watanabe-Nakayama T., Kodera N., Konno H., Ono K., Teplow D., Yamada M., Ando T.; "Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes"; Biophysical Journal 112 3 (2017)
    34. Zhang Y., Tunuguntla R., Choi P., Noy A.; "Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy"; Philosophical Transactions of The Royal Society B Biological Sciences 372 (2017)
    35. Zhang Y., Yoshida A., Sakai N., Uekusa Y., Kumeta M., Yoshimura S.; "In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy" Microscopy 20 (2017) p.272-282
     

     


     
    部分用戶列表:
     
版權所有:長沙和茂儀器設備有限公司 湘ICP備18020596號-1 GoogleSiteMap 技術支持:化工儀器網    管理登陸